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Correlation functions of the non-stationary quantum singular 
oscillator 

S M Chumakov, V V Dodonov and V I Man’ko 
P N Lebedev Institute of Physics, Academy of Sciences of the USSR, Leninsky Prospekt 
53, 117924 Moscow, USSR 

Received 2 January 1985, in final form 9 July 1985 

Abstract. The exact density matrix elements and the correlation functions of the one- 
dimensional non-stationary singular oscillator (the potential U ( x ,  t )  = w 2 (  t)x2/2 + g/x2) 
excited from the thermodynamicaquilibrium states are obtained. Generating functions for 
prim and also for transition probabilities are constructed. 

1. Introduction 

Investigations of non-stationary quantum systems which possess dynamical symmetry 
arouse a great deal of interest nowadays because of the remarkable possibility of 
obtaining exact solutions of quantum mechanical problems. The term ‘dynamical 
symmetry’ in this paper means that the Hamiltonian of the system (which is, generally, 
time dependent) can be considered as an element of some finite-dimensional Lie algebra 
g and, consequently, a trajectory is a curve in the corresponding Lie group G. Well 
known examples of such a situation include the motion of a spin in an external magnetic 
field, or a one-dimensional harmonic oscillator, when the Hamiltonian is the element 
of su(2) or su(1, l),  respectively. Another example is an n-level quantum system 
interacting with a classical electromagnetic field ( n  3 3) (see, e.g., Amirav ei a1 (1980), 
Elgin (1980) and Hioe (1983); the corresponding group is SU( n)). Recently the algebras 
so(6) and u(8) were used to describe the phenomena of superconductivity and charge- 
density waves in many-electron systems (Solomon 1981, Solomon and Birman 1982). 

In the present paper we consider a quantum system in one dimension described 
by the Hamiltonian 

ti2 a’ mo2(t)  g 
x2+- x > o  g = constant. (1) 2m ax2 2 X2 

H = -- -+- 

This system is called ‘a singular oscillator’; the Hamiltonian (1) is related to the Lie 
algebra su( 1 , l ) .  Therefore the corresponding Schrodinger equation can be solved 
exactly, as was done for the first time by Camiz et a1 (1971). Later Dodonov et a1 
(1974) calculated exactly the propagator and the matrix elements of the evolution 
operator. Various properties of quantum systems described by the Hamiltonian (1) 
were also studied, for example, by Hartly and Ray (1981). As for the physical 
applications, we refer to the paper by Gorokhov (1971) who used the Hamiltonian (1) 
to study vibrational modes of polyatomic molecules. 

0305-4470/86/163229+ 11$02.50 @ 1986 The Institute of Physics 3229 
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The aim of our paper is to consider the evolution of the density matrix of the 
singular oscillator which was initially in the equilibrium state corresponding to the 
initial value ai". We calculate the exact density matrix elements in the basis of the 
final Hamiltonian eigenstates and, therefore, the exact expressions for the energy level 
populations in the final state. The generating function for these matrix elements will 
also be obtained. We note that, under certain relations between the initial temperature 
and the form of the excitation w ( t ) ,  it turns out that in the final state the maximum 
occupation probabilities correspond not to the ground energy level (as it would for 
the equilibrium distribution) but to the excited levels, i.e. an inversion of populations 
can be obtained (it is supposed that the relaxation effects can be neglected). We discuss 
numerical examples of such a situation in appendix 1, where the simple asymptotic 
formula for the occupation probabilities is also obtained. We also calculate the 
multi-time correlation functions for the generators of the dynamical symmetry algebra 
of the problem under study and show that all of them can be expressed in terms of 
the first- and the second-order correlation functions. In appendix 2 we obtain a 
generating function for the transition probabilities between the initial and final Hamil- 
tonian eigenstates. As a consequence, a new generating function for the products of 
the Jacobi polynomials is found. 

2. The density matrix 

It is well known that the eigenstates of the singular oscillator Hamiltonian (1) form 
the basis of the infinite-dimensional irreducible representation of the Lie algebra 
su(1, 1) (see, e.g., Camiz er a1 1971). The generators of the representation can be 
chosen as follows: 

K O =  ( p 2 + x 2 ) / 4 + g / 2 x 2  p = -i a l a x  

K1 = ( p 2 - x 2 ) / 4 + g / 2 x 2  K2 = ( P X  + XP)/4 ( 2 )  

K , =  K,*iK2 [ K O ,  K*1= *K* [K, ,  K - ] = - 2 K o .  

We suppose that g >  - h 2 / 8 m .  In the opposite case, the Hamiltonian becomes non- 
Hermitian and a special analysis is required (Case 1950, Alliluyev 1971). The 
dimensional constants can be restored in the final formulae by means of the substitutions 

x + ( moi,/  h)'12x g + mgh-' 

Let us introduce a complete orthogonal set of states 

In), n = 0,1 , .  . . , 2Koln) = (2n + a  + I ) l n )  

K+ln) = [ ( n +  l ) ( n  + a +  l)]'"In+ 1) 

The explicit form of In) in the coordinate representation can be found in the paper by 
Dodonov et a1 (1974). When a = &  the vectors In) become the eigenvectors of the 
usual oscillator with the infinite wall at the point x = 0. The Casimir operator C = K i -  
K : -  K :  is equal to the number ( a 2 -  1)/4 for this representation. In this paper we 
will use the representation of the group SU(1, 1) (the universal covering of the group 
SU(1, l ) )  which corresponds to the representation ( 2 )  and ( 3 )  of the algebra su(1, l )  
(see Barut and Girardello 1971). Let f be an arbitrary operator from the representation 
of the group SU(1, l ) ,  for which we suppose that the corresponding element of the 

t + W,, t  W (  t )  + ai,,@( t ) .  

a = (1 + 8g)'12/2 
( 3 )  

K-In) = [ n (  n + ~ ) ] " ~ l n  - 1). 
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group possesses the Gauss decomposition: ? = exp(AK+) exp( BKo) exp( CK-)  (para- 
meters A, B, C are independent of the choice of the representation). It will be con- 
venient to use the following formula which expresses the matrix elements of the operator 
f in terms of Jacobi polynomials: 
(nlflm)=(nl exp(AK+) exp(BK,) exp(CK-)lm)= C"-" exp[B(a+ 1)/2] 

Equation (4) can be checked by direct calculation in the basis (3 )  if one uses the 
definition of Jacobi polynomials P p P ' ( x )  (Erdelyi 1953) and the relation 

We will also use the overcomplete basis of 'coherent states' (Dodonov et a1 1974; later 
the same was done by Gerry 1983): 

Here, (Y is an arbitrary complex number and Z,(z) is a modified Bessel function. We 
consider a Hamiltonian of a more general form than ( 1 ) :  

(7) 
H = n o K O +  R,K, + R2K, = exp( -iQKo) exp( -i,yK2)2wKo exp(ixK2) exp(iqcKo) 
Ro = 2w cosh x 
where f l , ( t )  are arbitrary real functions ( i=O, 1,2).  We assume that 4w2= 
fli - fl: - 

fl, = 2w sinh x cos Q n2 = 2w sinh x sin Q 

> 0 for any t. Moreover, we assume that 

X ( t )  = p ( t )  = R,( t )  = R,(t) = 0 n o (  t )  = 2w(t) = 2 
when t S 0. Therefore at any time t S 0 we have a singular oscillator with unit frequency. 

The evolution operator which satisfies the Schrodinger equation with the Hamil- 
tonian (7) 

i dU/d t  = i U  = HU U ( 0 )  = i (8) 
belongs to the representation of the group SU(1, 1 ) .  Consequently, it can be determined 
exactly. It is convenient to use the Gauss decomposition for the evolution operator U :  

9 )  

of 

U( t )=  exp(A(t)K+) exp(B(t)K,) exp(C(t)K-).  
The substitution of the form (9) in equation (8) leads to the following system 
equations for the parameters A, B and C: 

A - A B + A ~ C  e-B =-iR+ 
B - 2AC eCB = -iflo C e-B = -in- ( 
R+ = fi- 5 (a, -in2)/2 

with the initial conditions A(0) = B ( 0 )  = C(0) = 0. (In order to check (10) one has to 
use the identities 

exp(AK+)Ko exp(-AK+) = KO- AK+ 
exp(AK+)K- exp(-AK,) = K -  - 2 A K o + A 2 K +  
exp(BKo)Ko exp(-BKo) = exp(-B)K- 
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which follow from the commutation relation of the algebra su(1, l) .)  It is easy to 
verify that the solutions of the system (10) which satisfy the required initial conditions 
can be represented in the following form: 

i i  + (TE A = -  
i i  - (TE 

i i  - (TE 
exp(-B/2) = -- exp(icp/2) exp(-icp) 2 a  

(11) 
ib - crc C=- 
i i  - u E  

where U =  w ex - 412 and the functions E (  t )  and E (  t )  are the complex conjugate 
solutions of the equation 

& - (&/a)& + G 2 E  = 0 

l2 
E (  t s 0) = exp(ir) 

w 2 +  Q2/4 - Qw cosh x. 
Let us suppose that when t+m, the parameters c p ( t ) ,  x( t ) ,  w ( t )  tend sufficiently fast 
to constant values Q,, ,yo, 0,. Consequently, when t+m,  G 2 +  w i ,  a-$ woexp(xo), 
equations (12) are transformed into e +  &E = 0, E -, exp(xo/2)[8 exp(iw,t) - 
7 exp(-iw,t)] where complex parameters 5, 7 satisfy the restriction 1712 = 1. 
Further, we shall use the notation 

161 = cosh p/2 1771 = sinh p/2 2775~ exp(i+) sinh p. (13) 

Let us write down the asymptotic form of the evolution operator when t + CO. Corre- 
sponding values of the parameters A, B, C are given as follows: 

7 exp(-iw,t) cosh x0/2- 5 exp(iw,t) sinh xo/2 
5 exp(iw,t) cosh x0/2 - 7 exp( -iw,t) sinh x0/2 Af= exP(-iQo) 

exp(-Bf/2) = exp(icpo/2)[5 exp(iw,t) cosh x0/2 - 7 exp(-iw,t) sinh xo/2] 

Cf = 

U (  t -$ CO) = exp(A,K+) exp(BfKo) exp( CfX-). 
We consider now the physical situation, when a singular oscillator with unit frequency 
is excited from the thermodynamic equilibrium state with the temperature T. 

The excitation is described by the functions Oi(  t )  (i.e. cp( t ) ,  w (  t ) ,  x( t ) ) .  Suppose 
that at the time t + the system again becomes a singular oscillator but with a new 
frequency U,. Then it is necessary to put cpo=O, exp(-xo)= w g .  Let us introduce a 
new basis i n , f )  consisting of the eigenstates of the final Hamiltonian 

(14) fexp(-io,t) sinh x0/2- i j  exp(iw,t) cosh x0/2 
8 exp(iw,t) cosh x0/2- 77 exp(-io,?) sinh x0/2 

Hf = lim H = V2w,KO V-’  

b,f) = Vln) V exp( -iXoK,). 

1-a3 

(15) 

One can obtain the matrix elements describing the transitions from the initial states 
(3) to the final states (15):  

( n , f /  U ( t +  m)lm) = ( n /  v-’u( t- ,  oo)lm). 
It is convenient again to use the Gauss decomposition for the operator S =  
V-’ U( t + a) = exp(aK+) exp( 6Ko)  exp( y K - ) .  We find from (14) the following 
expressions for the parameters: 

a = (718) exp(-2iw0t) exp(-6/2) = 8 exp(iw,t) Y = -718. (16) 
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Now, (4) with the specification of the Gauss decomposition parameters (16) leads to 
the expressions for the transition matrix elements (,,A U (  t + co)(m) in terms of Jacobi 
polynomials which were obtained (using another approach) by Dodonov et a1 (1974). 
Now let us suppose that the duration of the external influence which caused the change 
of the parameters ai( t )  of the Hamiltonian is small with respect to the relaxation time. 
Then the system will be described in the final state by the (unnormalised) density matrix: 

p (  t + CO) = U (  t + m)p(O) U-'( t + m) 

~ ( 0 )  = exp(-2PKo) p = (KT) - ' .  

(We assume that the initial state was at equilibrium.) We calculate the density matrix 
elements in the final-state basis ln , f )=  Vln): 

(n,Ap(t)Im,f) = (nlSp(oW'lm)= (nliTt)lm) s =  v- 'U 
and we obtain, keeping in mind (13): 

lim c ( t )  = Sp(O)S-'= exp(A,K+) exp(BIKo) exp(C,K-) 
1-W 

exp(-2iw0t+i$) sinh p sinh p 
cosh fl +cosh p sinh p AI = = C' 

exp(-B,/2) = cosh p +cosh p sinh p. 

e- '@sinhp s inhp  )"-"( n! r (m+a+l ) ) ' / '  
= ( c o s h p + c o s h p  s inhp  m! r (n  + a + 1) 

cosh p -cosh p sinh p 
cosh p +cosh p sinh p x (cosh p +cosh p sinh p) - ( "+ ' )  

1 + sinh2 p sinh' p 
1 - sinh' p sinh' p 

where, for simplicity, we take m > n. (Here and below in the analogous situations we 
drop the factor of type exp[-iwot(2n+a+1)] which appears due to our choice of 
time-independent wavefunctions In, f).) 

Using the coherent states basis ( 6 )  one can obtain generating functions for the 
density matrix elements. It follows from ( 6 )  that 

(aI?\P)=(al exp(AK+) exp(BKo) exp(CK-)IP) 
= exp( E2A+p2C+b)  r ( a + i )  ( ;p)- ,  - I , ( E ~  eB"). 

2 

Using the connections of ( a )  and In) states we obtain the generating function for the 
matrix elements 

where z1 = E / a ,  z2= p / a ,  U = exp(B/2). Now, (20) with specification (17) of para- 
meters A, B, C gives the generating function for the density matrix elements. In 
appendix 2 we will obtain the generating function for transition probabilities, which 
leads to the new generating function for the products of the Jacobi polynomials. 
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The occupation probabilities of the energy levels are proportional to the diagonal 
elements pnn. The analysis of (18) for pnn shows that a population inversion can be 
obtained for certain values of the parameters p and p (see appendix 1). 

3. Correlation functions 

In this section we obtain expressions for the correlation functions which are defined 
as follows: 

G,,,, , . ( t l ,  - . . 9 t n )  (K,,(t1)&(t2) * . . . ‘ K,,,(tn)) 

= Q-’ Tr(exp(-2pKo)K,,(t,) - . . . * KJt , ) )  j k=0 ,1 ,2  (21) 

Q = Tr p ( 0 )  = Tr(exp(-2/3K0)) = exp(-pa)/2 sinh p. 
Here K,(t) are operators in the Heisenberg representation, and average values are 
calculated over the initial density matrix pa = exp( -2PK0). The values K,( t )  evolve 
as follows: 

K,( t )  = U-’(r)K,U( t )  = A ; ( t ) K , .  (22) 

Here A( t )  = llAl( t)ll is the evolution operator in the adjoint representation (hereafter 
we mean a summation over repeated ind.ices). The matrix elements Af( t ) ,  i , j  = 1,2,3, 
are expressed in terms of the parameters A(t) ,  B ( t ) ,  C ( t )  (see (9) and (11)): 

/ I  1-2AC eFB A e-”+A e-’ i(A e-’ - A  e-E) 1 1  

e-B(1+C2)-e-E(1+C2)  e-B(1-C2)+e-B(1-C2) 
2 

i(e-BC -e-”) 
2i 

We get directly from the definition (22) 

G,, J f 1 , .  . . , t , )  = A 5 ( f l )  * . . . * A:(K,, (24) . . . . Kk,). 

For the average values of generators we have 

a 
ap 

( K O )  = Q-’ Tr(exp(-2pKo)Ko) = -@’ -Q 

= (a  + coth p ) /2  

( K , )  = ( K , )  = 0. 

For the non-vanishing average products of the generators we obtain 

(Ki)=[ (a+coth  p)2+sinh-2 p] /4  

( K : )  = ( K i )  = (coth p + a )  coth /3/4 

( K 2 K l ) =  - (K,K2)=$(cothp+a) .  

We write down the expressions for the first- and second-order correlation functions 

G,(t) = A,”(t)(Ko) 

G,(~I  9 f z )  = AP(ti)A,”(t,)(K3+ [ A h M ; ( t z )  -At(tl)A:(t,)l(K,Kl) (25) 

+ [A ( f l  )A,! ( f z )  + A f ( t i  )A  ?( fz) I( K ;). 
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One can note that for the system under consideration all the correlation functions are 
expressed in terms of the first- and the second-order ones, because all the matrix 
elements of the evolution operator A{(?) are determined by the functions G,( t )  and 
G,(O, t ) .  In order to see this we derive from equation (25) 

AY(t)  = Gr(t)(Ko)-' 

A:(?)(K:)-h:(t)(K,Ki)= Gir(0, t )  

A:(f)(K2Ki)+A:(t)(K:)= G ~ ( 0 , t )  I = O ,  1,2 .  

We may consider the last two equations as a system which uniquely determines the 
elements A)**( t )  ( I  = 1,2, 0) since its determinant equals [ ( a  + coth p)/(4 sinh p)]' # 0. 
So, all the information about the evolution of the system is contained in the first- and 
second-order correlation functions. This fact is the consequence of the dynamical 
symmetry of the system under consideration. 

The correlation functions defined by the formulae (21) are the averages of the 
non-Hermitian operators. One can define 'symmetrical correlation functions' which 
take the real values 

G,,,, ,,,,=(n!>-'(IKIl(t1)K,,(f2) . .  . * K l " ( t n ) } ) ~ ( n ! ) - ' ~ ( K , , ( f i ) .  . . .  . K I n ( t n ) )  (26) 

(the sum is taken over all the permutations of the numbers i l ,  i 2 , .  . . , i n ) .  We are able 
to obtain the simple generating functional for the symmetrical correlation functions. 
For this goal let us consider an element of the representation of SU(1, 1) (which is 
locally coincident with the representation of SU(1, l ) :  

00 

T = exp(p'K,) P' = cp ' ( tMXt )  d t  j = o ,  1,2 (27) 

where cp' (  t )  are arbitrary functions. We get for the functional derivatives of the element 
T at the point cpo = p i =  c p 2  = 0: 

Taking the mean value with respect to the initial density matrix we obtain 2 E (T)  = 
Q-' Tr(p(0)T). The functional derivatives of 2 will be the symmetrical correlation 
functions 

The value Z can be calculated simply. To do this we can represent the element 
exp( -2PK0) T in the form 

exp(-2PKo) exp(p'Ki) = exp(;'K,) 

= exp( V-'2(3KoV) = V-' exp(2(3Ko) V 

(here p" are new parameters dependent on p and p i ,  2 4  = ( ( ~ o ) 2 - ( ~ i ) 2 - ( ~ 2 ) 2 ) 1 / 2 ) .  

Then we obtain 

exp[ a( 3 + p ) ]  sinh p 
sinh 3 

Z = 0-' Tr( V-' exp(2(3Ko) V) = - 
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The value &(p,  po, p ' ,  p 2 )  is independent of the choice of representation, and it is 
convenient to use for its calculation the two-dimensional fundamental representation 
of (in fact, SL(2, C ) ) .  Finally we obtain 

-& = cosh-'[cosh p cosh A - p o  sinh p sinh A/(2A)] 
r a  

4A2= ( p ' ) ) ' - ( ~ ' ) ~ - ( p ~ ) ~  p' = J cp'( .)A;( T) dT. 
--P 

Equations (28)-(30) give the generating functional for symmetrical correlation func- 
tions. 

Appendix 1 

It is interesting to consider the dependence (18) of the occupation probabilities P, - pnn 
on the initial-state temperature -p- '  and the parameter p, which characterises the 
form of excitation (see (12) and (13 ) ) .  Let us remember that to return to the physical 
(dimensional) values of the parameters one should put p = Awi,/kT, a = 
4( 1 + 8mgh-2) ' /2 .  For the fixed temperature and small values of p the value of p,, 
decreases monotonously with the increasing n, as in the case of the initial exponential 
distribution with p = O .  However, for the large enough values of p, it turns out that 
excitation levels are more occupied than the ground one. We give two typical figures 
(figures 1 and 2) for the value P,, which correspond to the choice a = 1 ,  p = 0.1, p = 3.5, 
4, 4.5 and the choice a = 100, p = 1 ,  p =0.2,  0.25, 0.3, 0.35 (if the spectroscopic 
frequency is C(cm-'), then p = 0.7C/ T ) .  

1 

2 4 6 8 

Figure 1. The occupation probabilities in the final state, a = 1;  p =0.1; p = 3.5 (.....), 4.0 
(---), 4.5 (--). 

Let us now suppose that the Hamiltonian (1) serves to describe (qualitatively, of 
course) the vibrations of a diatomic molecule. Then the equilibrium distance between 
the nuclei equals ro= ( 2 g / M ~ ' ) ' ' ~ ,  where M is the reduced mass of two nuclei. 
However, it is well known that in real molecules the energy of vibrations is of the 
order of Ao - E , ( m / M ) ' / 2 ,  where m is the electron mass, and E,  is the characteristic 
electron energy which is, in turn, of the order of E , -  h2/(mro)' (because ro is the 
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I... ... 

n 

Figure 2. The occupation probabilities in the final state; a = 100; p = 1; /L = 0.2 (.....), 0.25 
(---), 0.3 (-’-), 0.35 (-’.--). 

characteristic length of the region which electrons move in). Consequently, the para- 
meter g must be of the order of g - f i 2 /  m. Therefore the parameter a in such a situation 
must be of the order of a - ( M g h - 2 ) ’ / 2 -  ( M / m ) ” ’ > >  1. If one wants to apply this 
model to real molecules, then the following relation should be used: 

M .rrVr,, 
m A  

a = - -  

where A is the electron Compton wavelength, and P is the frequency of vibrations in 
spectroscopic units (cm-I). (Note that the frequency of vibrations 2.rrcP is equal to 
2w.) In particular, the parameter a is equal to 18 for the H2 molecule, a = 300 for N2 
and a = 1450 for 12. Calculations according to (18) for the values a = 100 and a = 200 
demonstrate the existence of population inversion (for appropriate choices of the 
parameters p and p ) .  On the other hand, one can obtain from (18) a simple asymptotic 
expression for the occupation probabilities P,,, which is valid for a>> n 3 O  and 
sinh p sinh p > 1. Simple manipulations with the use of an asymptotical formula for 
Jacobi polynomials (Erdelyi 1953, equations I.2.3.2( 14), II.10.8( 16)) lead to the follow- 
ing expression: 

a sinh’ p sinh’ p 
p,, = Q-’(cosh /3 +cosh p sinh /3)-(a+’)-  

(cosh /3 + sinh p sinh p)’ 

Q = exp(-pa)/(2 sinh p )  

which coincides with Poisson distribution and also demonstrates ‘population inversion’. 

Appendix 2 

Here we obtain both generating functions for the transition probabilities W,,, = 
I<n,n U( t --* oo)lm>12 and the corresponding generating function for the products of the 
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Jacobi polynomials. For this goal one has to calculate the integral 

where a = r exp(i(c), y is a real parameter, Ip) dlL(p)(pI = 1, coherent states la) are 
defined by formula (6), and 

T, = exp(A,K+) exp( B&,) exp( CIK-)  (1=1,2) 

are the arbitrary elements of the representation. The relation (19) implies that 
( a  1 T&y) = ~ ? ' + ~ ) ( a l  ?lip), where ? = exp(A,K+) exp(( B, + 2 In y l )K, )  exp(y:C,K-). 

Now we can calculate the integral (Al ) :  

= y - ( "+ ' ) r (a  + 1) exp(Bo/2)x-"Z~(2x exp( Bo/2))Zo(2x(AoCo)"2) (A2) 

where we have used (4) and introduced the notation 

x = r2/2 = /aI2/2 

Furthermore (4) implies (nl  Tim) = yZm+"+' (nlTlm) so that we can rewrite the integral 
(Al)  using the definition (6) of the states la): 

(kl ?llm)(ml T211)(~2/2)k( a 2 / 2 ) ' r ( a  + 1) 

To = ?, TI = exp(A,K+) exp( BOK,) exp( CoK-) .  

Comparing (A2) and (A3) we obtain 

e~p",/2)y-'"~''x-"Z~(2x exp( B0/2))Z0(2x(A0C0)'~') 

= g  x2 kY2m ( kl Tl I m )( m I T21 k) 
k m = o  k! r( k + a + 1) 

To calculate the parameters A,, Bo,  CO in the Gauss decomposition of operator 
To = Tl T2,  one can use the (non-unitary) (2 x 2) matrix representation of the group 
SU(1, l ) :  

Let us take, first Tl = T;' = V-' U (  t + CO) = S (the operator S corresponds to the 
transitions between the initial and final states (15)). Equations (A4) and (A5) in this 
case lead to the generating function for the transition probabilities 

w,, = I(n,fl U(t+co)lm)12= I(n(Slm)(': 

= $  X2nyZm w,, 
,,,,, =, n ! r( n + a + 1) * 
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Finally, using formula (4) which expresses the matrix elements of an operator T (in 
the representation (1)) in terms of the Jacobi polynomials we get the generating function 
for the products of the Jacobi polynomials 

= f  X2ky2m C:-kC:-m(t :  -AlCl)k(t:-A2C2)m 
k m = O  k !  r( k + a + 1) 

Here Ak, c k ,  tk = exp( Bk/2), ( k  = l., 2) are arbitrary parameters. Note that the function 
P(km-kO)(x)  with k >  m is defined by ( 5 ) .  We do not discuss here the convergence of 
the series in the right-hand part of equation (A7), e.g. it evidently converges if AIC1 < 0, 
A2C2< 0, f l , *  real, and Iy2C1A21 < 1, (x2C2AlI < 1. 
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